bmp图像文件格式超详解

news/2024/7/21 6:47:25 标签: c++, 图像处理

0 BMP简介

BMP(Bitmap-File)图形文件,又叫位图文件,是Windows采用的图形文件格式,在Windows环境下运行的所有图像处理软件都支持BMP图像文件格式。Windows系统内部各图像绘制操作都是以BMP为基础的。一个BMP文件由四部分组成:

BMP文件的数据按照从文件头开始的先后顺序分为四个部分:

  • 文件头(bmp file header):提供文件的格式、大小等信息

  • 信息头(bitmap information):提供图像数据的尺寸、位平面数、压缩方式、颜色索引等信息

  • 调色板(color palette):可选,如使用索引来表示图像,调色板就是索引与其对应的颜色的映射表

  • 位图数据(bitmap data):图像的像素值可以是RGB值,也可以是调色板的索引值。如果使用了调色板,那像素值就是调色板的索引值,可以根据像素值得到调色板索引值,然后根据调色板索引值找到相应的颜色,该颜色即为像素的颜色,如果用RGB值表示位图数据,那位图就没有调色板。通常8位深及8位深以下的图像会用到调色板,8位深以上的就不用调色板了,因为8位深以上的图像再使用调色板内存开销就会很大,直接使用RGB值存储,更节省内存。 以16位深图像为例,共有2^16=65536种颜色,如果使用调色板,调色板的大小就是262144字节,然后每个像素用16位表示,假设是一个100像素 * 100像素的图像,那么图像大小就是(100 * 16 +31)/324100=20000字节,而如果使用RGB值来存储,低5位表示蓝色,中间5位表示绿色,高5位表示红色,最高1位保留位,即每像素用2字节来表示,图像的大小就是(100 * 16 +31)/324100=20000字节,节省了调色板高达262144字节的空间!图像大小计算方式参考bmp图像大小计算方式

一个BMP文件可以用如下代码表示:

typedef struct tagBITMAP_FILE{
 
      BITMAPFILEHEADER bitmapheader;//文件头
      BITMAPINFOHEADER bitmapinfoheader;//信息头
      PALETTEENTRY palette[256];//调色板(可选)
      UCHAR *buffer;   //UCHAR 大小1字节(同C语言的unchar),指向图像数据信息
 
} BITMAP_FILE;

图像文件的底层全都是二进制形式,存储和读取都是以字节位单位的,所以图像数据要么是char* 存储,要么是unchar* 存储,为什么图像数据要用unchar*表示?

如果是char* 存储,那文件的每一个字节都是一个char,最高位是符号位无法表示图像像素信息,这肯定是不行的,比如1bit图像,文件中的某一个字节为00110011,最高位0本应该是表示白色,现在表示符号位就无法表示图像信息了,所以用unchar* 更为合适。且使用unchar* 文件中的每一个字节都是一个unchar,一个unchar的取值对应8位深图像的颜色索引,一个unchar的取值范围在0~255之间刚好对应8位深图像调色板0 ~ 255的颜色索引。

1 文件头

typedef struct tagBITMAPFILEHEADER { // bmfh 
    WORD    bfType; //占2字节
    DWORD   bfSize; //占4字节
    WORD    bfReserved1; //占2字节
    WORD    bfReserved2; //占2字节
    DWORD   bfOffBits; //占4字节
} BITMAPFILEHEADER;

在这里插入图片描述
以1张1bit灰度图像为例来介绍文件头、信息头、调色板和图像数据:
在这里插入图片描述1:0x424D->bfType: BM
2:0x0004a8e2->bfSize: 305378B(278KB)
在这里插入图片描述
打开文件属性,可以看到文件大小计算无误

3:0x00000000->bfReserved1bfReserved2:共4字节的保留字节,全设为0
4:0x0000003e->bfOffBits: 偏移量大小为62字节(14字节的文件头+40字节的信息头+8字节的调色板)

2 信息头

typedef struct tagBITMAPINFOHEADER{ // bmih 
    DWORD  biSize; 
    LONG   biWidth; //4字节
    LONG   biHeight; 
    WORD   biPlanes; 
    WORD   biBitCount 
    DWORD  biCompression; 
    DWORD  biSizeImage; 
    LONG   biXPelsPerMeter; 
    LONG   biYPelsPerMeter; 
    DWORD  biClrUsed; 
    DWORD  biClrImportant; 
} BITMAPINFOHEADER; 

在这里插入图片描述

在这里插入图片描述1:0x00000028->biSize=40字节
2:0x0000040f->biWidth=1039像素
3:0x00000909->biHeight=2313像素
4:0x0001->biPlanes=1
5:0x000a->biBitCount=1

通过图片检测计算无误
在这里插入图片描述
6:0x00000000->biCompression=0(没有压缩)
7:0x0004a8a4->biSizeImage=305316字节
我们可以通过LineBytes = (width * bitCount + 31) / 32 * 4计算来验证biSizeImage的大小是否正确,关于LineBytes = (width * bitCount + 31) / 32 * 4的原理可参考bmp图像大小计算方式
每行字节数为:(1039 * 1+31)/32 * 4=132B
图像大小为132 * 2313 = 305316B
由上述计算方式可知biSizeImage的大小正确
8:0x00000000->biXPelsPerMeter=0
9:0x00000000->biYPelsPerMeter=0
10:0x00000000->biCirUsed = 0
11:0x00000000->biClrImportant=0

注意biSize、bfSize、biSizeImage三者的区别:
biSize是信息头的大小,通常占40字节,bfSize是整个图像文件的大小,包括文件头+信息头+调色板(可选)+图像大小,biSizeImage是整个图像的大小。我们之前算的biSizeImage=305316,bfSize = 305378 = 文件头(14)+信息头(40)+调色板(8)+biSizeImage(305316)。

3 调色板

首先让我们举例说明什么是调色板?为什么需要调色板?

我们前面说过像素值可以是RGB值也可以是调色板索引号,现在有一个长宽各为200个像素,颜色数为16色的彩色图,每一个像素都用R、G、B三个分量表示。因为每个分量有256个级别,要用8位(bit),即一个字节(byte)来表示,所以每个像素需要用3个字节。整个图象要用200×200×3,约120k字节,可不是一个小数目呀!如果我们用调色板就能减少很多空间。

因为是一个16色图,也就是说这幅图中最多只有16种颜色,所以该我们可以用一个表:表中的每一行记录一种颜色的R、G、B值。这样当我们表示一个像素的颜色时,只需要指出该颜色是在第几行,即该颜色在表中的索引值。举个例子,如果表的第0行为255,0,0(红色),那么当某个像素为红色时,只需要用标明0即可,而无需用长达3字节的RGB值。
在这里插入图片描述

让我们再来计算一下:16种状态可以用4位(bit)表示,所以一个像素要用半个字节。整个图像要用200×200×0.5,约20k字节,再加上表占用的字节为3×16=48字节.整个占用的字节数约为前面的1/6,就节省了很多空间!这张记录了R、G、B的表,就是我们常说的调色板(Palette)。

可以使用C++预定义的结构体来定义调色板

typedef struct tagRGBQUAD {
        BYTE    rgbBlue;
        BYTE    rgbGreen;
        BYTE    rgbRed;
        BYTE    rgbReserved;
} RGBQUAD;

具体定义方式如下:

//定义一个1bit图像的调色板
//1bit图像只有2种颜色
RGBQUAD colors1[2];//定义调色板

//实现调色板
//每个分量占8位,所以1个颜色占4字节
colors1[0].rgbBlue = 0;      // 黑色
colors1[0].rgbGreen = 0;
colors1[0].rgbRed = 0;
colors1[0].rgbReserved = 0;

colors1[1].rgbBlue = 255;    // 白色
colors1[1].rgbGreen = 255;
colors1[1].rgbRed = 255;
colors1[1].rgbReserved = 0;

上面测试的图像为1bit图像,其中文件头占14字节,信息头占40字节,而文件头到实际数据之间的偏移量却为62字节,是因为文件头和信息头后面还有8字节的调色板。

那么为什么24位真彩色BMP不带调色板呢?

因为我们这张BMP是24位真彩色的BMP,所谓真彩色图(true color),就是它的颜色数高达256×256×256种,也就是说包含我们上述提到的R、G、B颜色表示方法中所有的颜色。真彩色图并不是说一幅图包含了所有的颜色,而是说它具有显示所有颜色的能力,即最多可以包含所有的颜色。表示真彩色图时,每个像素直接用R、G、B三个分量字节表示,而不采用调色板技术。原因很明显:如果用调色板,和直接用RGB值一样,每个像素都是用3字节表示,不但没有任何便宜,还要加上一个256×256×256×4个字节的大调色板。所以真彩色图直接用R、G、B三个分量表示更节省空间,它又叫做24位色图。

这么看来BMP文件不能一概而论了,其是否用调色板或者是RGB掩码,位图数据中的数据的真正含义直接与biBitCount 有关,不同类型的位图,其中的设计原理也不同,下面对此作一个对比:

在这里插入图片描述
上面基本把调色板及相关取色策略梳理清楚了,接着回到我们之前1位深图像的例子。

在这里插入图片描述
该图像是1bit图像,所以肯定是调色板图像,每个像素值占1位,表示调色板索引号,蓝色方框的8字节就是调色板信息,后面的信息就是图像数据信息了,比如0xFF,对应的二进制就是11111111,表示这8个像素每个像素都是调色板中索引号为1的颜色。

由于位图信息头中的图像高度是正数,所以位图数据在文件中的排列顺序是从左下角到右上角,以行为主序排列的。


http://www.niftyadmin.cn/n/5318012.html

相关文章

项目中使用firame引入html 解决路由错乱问题

问题描述: 在项目中使用firame引入html,引入的html中有路由跳转,当点击html页面中的路由跳转时,浏览器history会记录次路由,当在引入iframe返回上一级的页面中使用 router.go(-1)就会返回iframe中距离的路由&#xff…

【Pytorch简介】1.Introduction 简介

Introduction 简介 大多数机器学习工作流涉及处理数据、创建模型、使用超参数优化模型,以及保存,然后推理已训练的模型。 本模块介绍在 PyTorch(一种常用的 Python ML 框架)中实现的完整机器学习 (ML) 工作流。 我们使用 Fashio…

Hive命令调优大全

– explain语法查询** – explain解析执行计划 – 以下优化为hive层面优化,常开**** – 读取零拷贝 set hive.exec.orc.zerocopy=true; – 默认false – 关联优化器 set hive.optimize.correlation=true; – 默认false – fetch本地抓取 set hive.fetch.task.conversion=min…

【机器学习300问】3、机器学习中有哪些数据集都有什么用?

在机器学习中,通常将数据集按照不同的功能分成三种:训练集、验证集和测试集。 一、训练集(Training Set) 作用:用来训练模型算法,模型算法根据这个集合中的样本和对应的标签来学习模型参数或权重。 二、验…

解决npm run start 和 node.js src/main.js 引用资源文件路径不一致问题

解决npm run start 和 node.js src/main.js 引用资源文件路径不一致问题 问题描述 写了一个node.js连接sqlite3数据库的项目,因为数据库sqlite3.db文件相对于根目录和src/main.js路径不一致,打包时总有一种方法失败 分析原因 数据库sqlite3.db文件是…

物联网通讯协议NB-lot和LoRa差异分析

像把大象装冰箱一样,物联网,万物互联也是要分步骤的。 一、感知层(信息获取层),即利用各种传感器等设备随时随地获取物体的信息; 二、网络层(信息传输层),通过各种电信网络与互联网的融合,将物体的信息实时准确地传递…

计算机网络-2019期末考试解析

【前言】 从内容上看比较像计算机网络课程了,先做了。 一.填空选择题(共 20 分,每空 1 分) 1 、双绞线由两根相互绝缘的、绞合成均匀的螺纹状的导线组成,下列关于双绞线的叙述,不正确的是___ __…

基于JavaWeb+BS架构+SpringBoot+Vue基于hive旅游数据的分析与应用系统的设计和实现

基于JavaWebBS架构SpringBootVue基于hive旅游数据的分析与应用系统的设计和实现 文末获取源码Lun文目录前言主要技术系统设计功能截图订阅经典源码专栏Java项目精品实战案例《500套》 源码获取 文末获取源码 Lun文目录 1 概 述 5 1.1 研究背景 5 1.2 研究意义 5 1.3 研究内容…