图像的压缩感知的MATLAB实现(第3种方案)

前面介绍了两种不同的压缩感知实现:
图像压缩感知的MATLAB实现(OMP)
压缩感知的图像仿真(MATLAB源代码)

上述两种方法还存在着“速度慢、精度低”等不足。
本篇介绍一种新的方法。

压缩感知(Compressed Sensing)是一种信号处理技术,旨在通过取样和重构过程中的稀疏性或低维性的先验知识,从少量的测量数据中恢复原始信号。与传统的信号采样方式相比,压缩感知可以以更低的采样率获取信号,并在一定程度上保持较高的重构质量。

以下是压缩感知的一些重要知识点:

  1. 稀疏性:压缩感知假设信号在某个表示域下是稀疏的,即信号能够用较少的非零系数表示。这意味着信号的大部分能量集中在少数几个基函数上,而其他系数很接近于零。

  2. 测量矩阵:压缩感知使用一个测量矩阵来计算信号的投影测量。测量矩阵可以是随机矩阵或基于不同的测量方法生成的。测量矩阵的选择对于压缩感知的性能具有重要影响。

  3. 重构算法:压缩感知利用稀疏表示的先验知识,通过最小化正则化函数来恢复原始信号。常用的重构算法包括基于L1范数的贪婪迭代算法(如OMP、CoSaMP)、基于迭代阈值的算法(如IST、FISTA)和基于凸优化的算法(如基于内点法的L1优化)。

  4. 重构性能:压缩感知的重构性能用于衡量在给定的测量数量下,重构的信号与原始信号之间的误差。重构性能受到信号的稀疏度、测量矩阵的设计和重构算法的选择等因素的影响。

MATLAB和其他数学软件提供了用于压缩感知的工具箱和函数,如 l1magicSPGL1。这些函数可以用于生成测量矩阵、实现重构算法,并进行压缩感知的仿真和实验。

压缩感知在图像处理、语音信号处理、雷达成像、医学成像等领域都得到了广泛的应用。它提供了一种新的思路和方法,可以在低采样率下实现高质量的信号重构,并对传统信号采样理论进行了一定的突破。

MATLAB实现

针对网络上沙威老师的代码中所使用小波变换进行了修改。
将其中自定义的dwt函数修改了了使用MATLAB自带的dwt2函数。

MATLAB代码

MATLAB代码实现如下:

matlab">
clc;clear

%  读文件
X=imread('lenagray.bmp');
X=double(X);
[a,b]=size(X);

% %  小波变换矩阵生成
% ww=DWT(a);
% % ww=a;
% %
% % %  小波变换让图像稀疏化(注意该步骤会耗费时间,但是会增大稀疏度)
% X1=ww*sparse(X)*ww';
% % % X1=X;
% X1=full(X1);
%
% X1=X;

[LL1, LH1, HL1, HH1] = dwt2(X, 'haar');
[LL2, LH2, HL2, HH2] = dwt2(LL1, 'haar');
[LL3, LH3, HL3, HH3] = dwt2(LL2, 'haar');
[LL4, LH4, HL4, HH4] = dwt2(LL3, 'haar');

LL3 = [LL4, LH4; HL4, HH4];
LL2=[LL3, LH3; HL3, HH3];
LL1=[LL2, LH2; HL2, HH2];
X1=[LL1, LH1; HL1, HH1];



%  随机矩阵生成
M=190;
R=randn(M,a);
% R=mapminmax(R,0,255);
% R=round(R);

%  测量值
Y=R*X1;

%  OMP算法
%  恢复矩阵
X2=zeros(a,b);
%  按列循环
for i=1:b
    %  通过OMP,返回每一列信号对应的恢复值(小波域)
    rec=omp(Y(:,i),R,a);
    %  恢复值矩阵,用于反变换
    X2(:,i)=rec;
end


%  原始图像
figure(1);
imshow(uint8(X));
title('原始图像');

%  变换图像
figure(2);
imshow(uint8(X1));
title('小波变换后的图像');

%  压缩传感恢复的图像
figure(3);
%  小波反变换
% X3=ww'*sparse(X2)*ww;
% X3=X2;
% X3=full(X3);
% X3=idwt2(X2);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% 执行逆小波变换
[LL1, LH1, HL1, HH1] = partitionMatrix(X2);
[LL2, LH2, HL2, HH2] = partitionMatrix(LL1);
[LL3, LH3, HL3, HH3] = partitionMatrix(LL2);
[LL4, LH4, HL4, HH4] = partitionMatrix(LL3);

% 第四级逆变换
LL3 = idwt2(LL4, LH4, HL4, HH4, 'haar');

% 第三级逆变换
LL2= idwt2(LL3, LH3, HL3, HH3, 'haar');

% 第二级逆变换
LL1 = idwt2(LL2, LH2, HL2, HH2, 'haar');

% 第一级逆变换,得到原始图像
X3 = idwt2(LL1, LH1, HL1, HH1, 'haar');



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


imshow(uint8(X3));
title('恢复的图像');

%  误差(PSNR)
%  MSE误差
errorx=sum(sum(abs(X3-X).^2));
%  PSNR
psnr=10*log10(255*255/(errorx/a/b))


%  OMP的函数
%  s-测量;T-观测矩阵;N-向量大小
function hat_y=omp(s,T,N)
Size=size(T);                                     %  观测矩阵大小
M=Size(1);                                        %  测量
hat_y=zeros(1,N);                                 %  待重构的谱域(变换域)向量
Aug_t=[];                                         %  增量矩阵(初始值为空矩阵)
r_n=s;                                            %  残差值

for times=1:M;                                  %  迭代次数(稀疏度是测量的1/4)
    for col=1:N;                                  %  恢复矩阵的所有列向量
        product(col)=abs(T(:,col)'*r_n);          %  恢复矩阵的列向量和残差的投影系数(内积值)
    end
    [val,pos]=max(product);                       %  最大投影系数对应的位置
    Aug_t=[Aug_t,T(:,pos)];                       %  矩阵扩充
    T(:,pos)=zeros(M,1);                          %  选中的列置零(实质上应该去掉,为了简单我把它置零)
    aug_y=(Aug_t'*Aug_t)^(-1)*Aug_t'*s;           %  最小二乘,使残差最小
    r_n=s-Aug_t*aug_y;                            %  残差
    pos_array(times)=pos;                         %  纪录最大投影系数的位置
    
    if (norm(r_n)<0.9)                            %  残差足够小
        break;
    end
end
hat_y(pos_array)=aug_y;                           %  重构的向量

end


function [X1, X2, X3, X4] = partitionMatrix(X)
% 获取矩阵X的大小
[m, n] = size(X);

% 将矩阵X划分为四等份
X1 = X(1:m/2, 1:n/2); % 左上角子矩阵
X2 = X(1:m/2, n/2+1:end); % 右上角子矩阵
X3 = X(m/2+1:end, 1:n/2); % 左下角子矩阵
X4 = X(m/2+1:end, n/2+1:end); % 右下角子矩阵
end


输出结果

输出结果如下,效果一般,而且速度较慢。

在这里插入图片描述

参考知识点

MATLAB小波变换函数

小波变换是一种信号处理技术,通过在时间-频率域中使用基于小波的函数进行信号分析。小波变换在处理非平稳信号和图像时特别有用,可以将信号分解为不同频率的成分。它在数据压缩、去噪、特征提取等领域有广泛应用。

MATLAB中提供了用于二维离散小波变换的函数 dwt2,可以将图像进行小波分解。该函数执行的是多级离散小波变换,将图像分解为多个尺度的近似系数和细节系数。具体来说,dwt2函数的语法如下:

matlab">[C, S] = dwt2(X, wavelet)

其中,

  • X 是输入的二维图像;
  • wavelet 是指定的小波基函数,比如 'haar''db1' 等;
  • C 是包含小波变换系数的矩阵;
  • S 是描述小波变换结果各层的结构体。

你可以通过调用dwt2函数来执行二维离散小波变换,得到图像的小波分解系数和结构信息。然后,你可以进一步对获得的系数进行处理,比如重构原始图像、进行图像压缩、图像增强等。

需要注意的是,小波变换是一种复杂的信号处理技术,需要一定的理论基础和实践经验来使用和理解。

自定义函数

网络上沙威老师的dwt版本如下:

matlab">function ww=DWT(N)
[h,g]=wfilters('haar','d');      %  分解低通和高通滤波器
% N=256;                           %  矩阵维数(大小为2的整数幂次)
L=length(h);                       %  滤波器长度
rank_max=log2(N);                  %  最大层数
rank_min=double(int8(log2(L)))+1+3;  %  最小层数
ww=1;   %  预处理矩阵
%  矩阵构造
for jj=rank_min:rank_max
    nn=2^jj;
    %  构造向量
    p1_0=sparse([h,zeros(1,nn-L)]);
    p2_0=sparse([g,zeros(1,nn-L)]);
    
    %  向量圆周移位
    for ii=1:nn/2
        p1(ii,:)=circshift(p1_0',2*(ii-1))';
        p2(ii,:)=circshift(p2_0',2*(ii-1))';
    end
    
    %  构造正交矩阵
    w1=[p1;p2];
    mm=2^rank_max-length(w1);
    w=sparse([w1,zeros(length(w1),mm);zeros(mm,length(w1)),eye(mm,mm)]);
    ww=ww*w;
    
    clear p1;clear p2;
end

相关博文

理解并实现OpenCV中的图像平滑技术

OpenCV中的边缘检测技术及实现

OpenCV识别人脸案例实战

入门OpenCV:图像阈值处理

我的图书

下面两本书欢迎大家参考学习。

OpenCV轻松入门

李立宗,OpenCV轻松入门,电子工业出版社,2023
本书基于面向 Python 的 OpenCV(OpenCV for Python),介绍了图像处理的方方面面。本书以 OpenCV 官方文档的知识脉络为主线,并对细节进行补充和说明。书中不仅介绍了 OpenCV 函数的使用方法,还介绍了函数实现的算法原理。

在介绍 OpenCV 函数的使用方法时,提供了大量的程序示例,并以循序渐进的方式展开。首先,直观地展示函数在易于观察的小数组上的使用方法、处理过程、运行结果,方便读者更深入地理解函数的原理、使用方法、运行机制、处理结果。在此基础上,进一步介绍如何更好地使用函数处理图像。在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的实例来说明问题,避免使用过多复杂抽象的公式。

本书适合计算机视觉领域的初学者阅读,包括在校学生、教师、专业技术人员、图像处理爱好者。
本书第1版出版后,深受广大读者朋友的喜爱,被很多高校选为教材,目前已经累计重印9次。为了更好地方便大家学习,对本书进行了修订。
在这里插入图片描述

计算机视觉40例

李立宗,计算机视觉40例,电子工业出版社,2022
近年来,我深耕计算机视觉领域的课程研发工作,在该领域尤其是OpenCV-Python方面积累了一点儿经验。因此,我经常会收到该领域相关知识点的咨询,内容涵盖图像处理的基础知识、OpenCV工具的使用、深度学习的具体应用等多个方面。为了更好地把所积累的知识以图文的形式分享给大家,我将该领域内的知识点进行了系统的整理,编写了本书。希望本书的内容能够对大家在计算机视觉方向的学习有所帮助。
本书以OpenCV-Python(the Python API for OpenCV)为工具,以案例为载体,系统介绍了计算机视觉从入门到深度学习的相关知识点。
本书从计算机视觉基础、经典案例、机器学习、深度学习、人脸识别应用等五个方面对计算机视觉的相关知识点做了全面、系统、深入的介绍。书中共介绍了40余个经典的计算机视觉案例,其中既有字符识别、信息加密、指纹识别、车牌识别、次品检测等计算机视觉的经典案例,也包含图像分类、目标检测、语义分割、实例分割、风格迁移、姿势识别等基于深度学习的计算机视觉案例,还包括表情识别、驾驶员疲劳监测、易容术、识别年龄和性别等针对人脸的应用案例。
在介绍具体的算法原理时,本书尽量使用通俗易懂的语言和贴近生活的示例来说明问题,避免使用复杂抽象的公式来介绍。
本书适合计算机视觉领域的初学者阅读,适于在校学生、教师、专业技术人员、图像处理爱好者使用。

在这里插入图片描述


http://www.niftyadmin.cn/n/5396668.html

相关文章

[C++]C++实现本地TCP通讯的示例代码

这篇文章主要为大家详细介绍了C如何利用TCP技术,实现本地ROS1和ROS2的通讯,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下 概要服务端代码 头文件源代码客户端代码 概要 利用TCP技术&#xff0c;实现本地ROS1和ROS2的通讯。 服务端代码 头文件 #include &…

R语言实现分位数回归和二次分位数回归

大家好&#xff0c;我是带我去滑雪&#xff01;新的一年&#xff0c;新的气象&#xff0c;在接下来的日子里我将继续和各位小伙伴们分享我在科研道路上&#xff0c;学习的一些知识&#xff01; 分位数回归和二次分位数回归是统计学中用于分析因变量与自变量之间关系的方法&…

MFC SmartPay_PGL.dll编译报错修复 使4种模式都能编译(32位,64位,debug,release)

严重性 代码 说明 项目 文件 行 禁止显示状态 错误 C2440 “”: 无法从“TCHAR [260]”转换为“LPCWSTR” SmartPay_PGLDLL_192787 d:\010f200\svn\smartpay\src_moudle20231009\src_moudle\smartpay_pgldll_192787\src\com\comtransmit.cpp 96 字符集改为uncode 严重性 代码…

【wow-ts学习笔记】Vue3第一章:模板

本课程是DW内测开源课程wow-ts项目的学习笔记 项目地址&#xff1a; https://github.com/datawhalechina/wow-ts 什么是 Vue3​ Vue (发音为 /vjuː/&#xff0c;类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建&#xff0c;并…

【机器人最短路径规划问题(栅格地图)】基于蚁群算法求解

基于蚁群算法求解机器人最短路径规划问题的仿真结果 仿真结果 收敛曲线变化趋势 蚁群算法求解最优解的机器人运动路径 各代蚂蚁求解机器人最短路径的运动轨迹

手把手教你使用python中的循环for和while

python中的for循环是一个通用的序列迭代器&#xff0c;可以遍历任何有序的序列对象内部的元素&#xff0c;&#xff08;注意是遍历&#xff09;&#xff0c;也就是说循环的方式一开始就固定好了&#xff0c;本质上是遍历。 python&#xff1a;代码 count 0for i in range(8):…

GIT问题记录

一、 1.Gitee相关 复现步骤&#xff1a;自己在gitee上使用WEB解决冲突&#xff0c;本地未拉取最新的origin分支&#xff0c;然后本地也做了其他的修改&#xff0c;然后commit并且push&#xff0c;push时候报错&#xff0c;本地分支不干净 尝试拉取origin的最新内容&#xff…

微信小程序(四十六)登入界面-进阶版

注释很详细&#xff0c;直接上代码 上一篇 此文使用了vant组件库&#xff0c;没有安装配置的可以参考此篇vant组件的安装与配置 新增内容&#xff1a; 1.手机号与验证码格式验证 2.验证码的网络申请和校验 wechat-http模块在好几篇以前已经讲了咋安装的&#xff0c;不记得的友…