论文阅读NAM:Normalization-based Attention Module

Abstarct

识别不太显著的特征是模型压缩的关键。然而,在革命性的注意力机制中却没有对其进行研究。在这项工作中,我们提出了一种新的基于归一化的注意力模块(NAM),它抑制了不太显著的权重。它对注意力模块应用了权重稀疏性惩罚,从而使它们在保持类似性能的同时具有更高的计算效率。与Resnet和Mobilenet上的其他三种注意力机制的比较表明,我们的方法具有更高的准确性。

Introduction

注意机制是近年来研究的热点之一 (Wang et al.[2017], Hu et al. [2018], Park et al. [2018], Woo et al. [2018], Gao et al. [2019]).)。它有助于深度神经网络抑制不太显著的像素或通道。先前的许多研究都集中在通过注意力操作捕捉显著特征上(Zhang et al. [2020], Misra et al. [2021])。这些方法成功地利用了来自不同维度特征的相互信息。然而,它们缺乏对权重的贡献因素的考虑,这能够进一步抑制不重要的通道或像素。受Liu et al. [2017]的启发,我们旨在利用权重的贡献因素来改善注意力机制。我们使用批量归一化的比例因子,该比例因子使用标准偏差来表示权重的重要性。这可以避免添加SE、BAM和CBAM中使用的完全连接层和卷积层。因此,我们提出了一种有效的注意力机制——基于归一化的注意力模块(NAM)。

Related work

许多先前的工作试图通过抑制不重要的权重来提高神经网络的性能。挤压和激励网络(SENet)(Hu et al[2018])将空间信息集成到通道特征响应中,并使用两个多层感知器(MLP)层计算相应的注意力。后来,瓶颈注意力模块(BAM)(Park et al. [2018]) b并行构建了分离的空间和通道子模块,它们可以嵌入到每个瓶颈块中。卷积块注意力模块(CBAM) (Woo et al. [2018]) 提供了一种按顺序嵌入通道和空间注意力子模块的解决方案,为了避免忽视跨维度交互,三重注意力模块(TAM)) (Misra et al. [2021]) 通过旋转特征图来考虑维度相关性。然而,这些工作忽略了来自训练的调谐权重的信息。因此,我们的目标是通过利用训练的模型权重的方差测量来突出显著特征。

Methodology

我们提出了NAM作为一种高效和轻量级的注意机制。我们采用了CBAM的模块集成(Woo et al[2018]),并重新设计了通道和空间注意力子模块。然后,在每个网络块的末端嵌入一个NAM模块。对于残差网络,它嵌入在残差结构的末端。对于通道注意力子模块,我们使用批量归一化(BN)的比例因子(Ioffe and Szegedy [2015]),如公式(1)所示。比例因子测量信道的方差并指示它们的重要性。

B_{out}=BN(BN_{in} )=\gamma \frac{B_{in}-\mu\mathcal{_{B}}}{\sigma _{\mathcal{_{B}}}^{2}+\epsilon}                                   (1)

其中\mu\mathcal{_{B}}\sigma\mathcal{_{B}}分别为小批量\mathcal{B}的平均值和标准偏差;γ和β是可训练的仿射变换参数(尺度和偏移)(Ioffe and Szegedy [2015])。通道注意力子模块如图1和方程(2)所示,其中M_c表示输出特征。γ是每个通道的比例因子,权重为W_{\gamma } =\gamma _{i} / {\textstyle \sum_{j=0}^{}\gamma _{j} }。我们还将BN的比例因子应用于空间维度,以测量像素的重要性。我们将其命名为像素归一化。相应的空间注意力子模块如图2和方程(3)所示,其中输出表示为M_s\lambda是比例因子,权重为W_{\lambda } =\lambda _{i} / {\textstyle \sum_{j=0}^{}\lambda _{j} }。为了抑制不太显著的权重,我们将正则化项添加到损失函数中,如方程(4)所示(Liu et al[2017]),其x表示输入,γ是输出;表示网络权重;l(\cdot )是损失函数;g(\cdot )l_1范数罚函数;p是平衡g(\gamma)g(\lambda)的惩罚。

M_c=sigmoid(W_\gamma(BN(F_1)) )                   (2)

M_s=sigmoid(W_\lambda(BN(F_2)) )                   (3)

Loss=\sum_{(x,y)}^{} l(f(x,W),g)+p\sum g(\gamma )+p\sum g(\lambda )                    (4)

Experiment

在本节中,我们比较了NAM与SE、BAM、CBAM和TAM在ResNet和MobileNet中的性能。我们在一个集群上使用四个Nvidia Tesla V100 GPU来评估每种方法。我们首先在CIFAR-100上运行ResNet50(Krizhevsky等人[2009]),并使用与CBAM相同的预处理和训练配置(Woo等人[2018]),p为0.0001。表1中的比较表明,单独使用通道或空间注意力的NAM优于其他四种注意力机制。然后,我们在ImageNet上运行MobileNet(Deng等人[2009]),因为它是图像分类基准的标准数据集之一。我们将p设置为0.001,其余配置与CBAM相同。表2中的比较表明,信道和空间注意力相结合的NAM优于其他三种计算复杂度相似的NAM。

Conclusion

我们提出了一个NAM模块,该模块通过抑制不太显著的特征来提高效率。我们的实验表明,NAM在ResNet和MobileNet上都提供了效率增益。我们正在对NAM在积分变化和超参数调整方面的性能进行详细分析。我们还计划利用不同的模型压缩技术对 NAM 进行优化,以提高其效率。未来,我们将研究它对其他深度学习架构和应用的影响。

Code

import torch.nn as nn
import torch
from torch.nn import functional as F


class Channel_Att(nn.Module):
    def __init__(self, channels, t=16):
        super(Channel_Att, self).__init__()
        self.channels = channels
      
        self.bn2 = nn.BatchNorm2d(self.channels, affine=True)


    def forward(self, x):
        residual = x

        x = self.bn2(x)
        weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())
        x = x.permute(0, 2, 3, 1).contiguous()
        x = torch.mul(weight_bn, x)
        x = x.permute(0, 3, 1, 2).contiguous()
        
        x = torch.sigmoid(x) * residual #
        
        return x


class Att(nn.Module):
    def __init__(self, channels,shape, out_channels=None, no_spatial=True):
        super(Att, self).__init__()
        self.Channel_Att = Channel_Att(channels)
  
    def forward(self, x):
        x_out1=self.Channel_Att(x)
 
        return x_out1  


http://www.niftyadmin.cn/n/5398483.html

相关文章

android开发前景2019,android高级面试framework

到底是公司养活了我,还是我养活了公司? 1. 很难在一家公司干到退休 在我父母那一代,一个上班的职工,往往可以在一家单位干到退休,名副其实的“铁饭碗”。甚至更早之前的年代,职工的子女还可以接父母的班&a…

serve error code=5011(RtcRtpMuxer)(Failed to mux RTP packet for RTC)

SRS日志报错如下: [2023-02-09 12:14:02.230][ERROR][27919][4u14n5rj][4] serve error code5011(RtcRtpMuxer)(Failed to mux RTP packet for RTC) : service cycle : rtmp: stream service : rtmp: receive thread : handle publish message : rtmp: consume mes…

qt5与qt6的cmake区别

文章目录 使用cmake构建qt项目,坑很多。一是本身就麻烦,二是,确实坑,因为不同的qtcreator版本,选了不同的kits(套件) 生成的CMakeList.txt文件也不一样。 如果可以的话都选择Qt6的相关选项&…

golang学习参考记录

1.ORM结果处理 - GoFrame (ZH)-v1.15 - GoFrame官网 - 类似PHP-Laravel, Java-SpringBoot的Go企业级开发框架 2.mysql操作 GORM连接Mysql数据库 - 梯子教程网

C# 高阶语法 —— Winfrom链接SQL数据库的存储过程

存储过程在应用程序端的使用的优点 1 如果sql语句直接写在客户端,以一个字符串的形式体现的,提示不友好,会导致效率降低 2 sql语句写在客户端,可以利用sql注入进行攻击,为了安全性,可以把sql封装在…

TeXiFy IDEA 编译后文献引用为 “[?]“

文章目录 1. 问题描述2. 原因分析3. 解决方案3.1 添加自动化脚本3.2 附录——配置一览表 1. 问题描述 在 IDEA 中使用 TeXiFy IDEA 编译后的文章文献引用是 [?] 2. 原因分析 根据网上教程所生成的目录结构如下: 报错日志: 根据 /out 目录结构&#x…

【重要公告】BSV区块链协会全新推出“网络访问规则NAR”

​​发表时间:2024年2月15日 BSV区块链协会正式宣布已为BSV区块链推出一套全新的网络访问规则(Network Access Rules,以下简称“NAR”)。 NAR是一整套规则,用于规范BSV协会与BSV网络节点之间的关系。它基于比特币最初…

android开发平台,Java+性能优化+APP开发+NDK+跨平台技术

开头 通常作为一个Android APP开发者,我们并不关心Android的源代码实现,不过随着Android开发者越来越多,企业在筛选Android程序员时越来越看中一个程序员对于Android底层的理解和思考,这里的底层主要就是Android Framewok中各个组…